Simulating 3D Atmospheric Motion Vectors (AMVs) using Water Vapor Feature Tracking

Derek J. Posselt¹

Hui Su¹, Longtao Wu¹, Lei Huang², Hai Nguyen¹, Chris Velden³, Dave Santek³

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

²University of California, Los Angeles, CA

²CIMSS/University of Wisconsin, Madison, WI

Atmospheric Winds: Systems Approach

- Emerging consensus that a systems approach is needed for space based observation of atmospheric winds
 - Lidar: high accuracy, limited sampling in space and time
 - AMVs (or other approaches): lower accuracy, broader coverage, possibility of relatively rapid revisit
- Key questions:
 - What are the relative strengths / drawbacks of AMVs as a component of a global 3D winds observing system?
 - What is the most effective synergy among various measurement techniques and sampling strategies?

Atmospheric Motion Vectors

- Use of image processing (and other) techniques to track atmospheric motion from sequences of images
- Heritage in tracking clouds and water vapor
- Known to be uncertain, and to contain ambiguities (more on this in a minute)
- Motivation to systematically explore the potential efficacy of AMVs, and quantify their uncertainties
 - More effective use in DA/OSSEs
 - Evaluation of various AMV measurement concepts
 - Potential synergy with other wind measurements

Model Water Vapor

Model Wind Speed and Direction

32

AMV Retrieval Uncertainty Analysis ("Pre-OSSE" - Atlas and Emmitt)

- Produce a high resolution simulation of a representative case (nature run): known water vapor and wind – "truth"
- Retrieve atmospheric motion vectors from this nature run
 - Vary assumptions used in the tracking methodology
 - Modify the instrument sampling properties (spatial and temporal)
- Compare retrieved with true winds
 - Quantify uncertainties by comparing AMVs to the "true" winds
 - Compute RMSE and the state dependence of errors where/when are AMVs expected to perform reasonably well / poorly?
 - Explore the effect of coarse spatial (horizontal and/or vertical) resolution
 - (Ultimately) use functional uncertainties in forecast OSSEs through collaboration with GMAO and NOAA QOSAP

Model Wind Speed and Direction

Initial Results: 5-Minute dt, 1.33 km dx,dy

- Tracking algorithm recovers the approximate distribution of winds in the cyclone
- There are obvious gaps (low water vapor content)
- Explore sensitivity to tracking algorithm settings, time interval, and field of view

Sensitivity to Sampling Interval

- No cloud mask, vapor and winds are noise-free and at model resolution
- Brighter colors = larger retrieval errors
- Gray areas indicate regions without retrieved wind (algorithm failure)
- Trade between coverage (rapid revisit) and accuracy (longer revisit intervals)

Sensitivity to Field of View

- Tracking over smaller FOV:
 - Higher accuracy
 - Smaller coverage

State Dependent AMV Errors

- Retrieval errors are generally within ±2 m/s.
- Large errors occur when moisture content is low or wind direction is perpendicular to moisture gradient.

Y-axis: Difference between retrieved AMV wind speed and nature run.

Comparing Feature-Tracking Algorithms

 Operational GOES-R AMV algorithm has more stringent quality control, resulting in smaller RMS error but less coverage of AMV winds.

- U. Wisconsin algorithm: operational GOES-R AMV featuretracking algorithm
- JPL algorithm:
 simplified MISR
 CMV featuretracking algorithm

07 February 2018

Wind Retrieval Uncertainty: Outcomes

- Quantified accuracy of AMVs: most vectors have uncertainties < 2 m/s, however...
- State dependence: error is large where
 - Water vapor content is small
 - Wind vectors are oriented along vapor contours
- Algorithm sensitivity: trade-off between accuracy and coverage
 - Rapid sampling: large coverage, low accuracy
 - Large FOV: smaller coverage, higher accuracy

Angle between moisture gradient and wind direction (deg)

AMV Retrieval Uncertainty: Next Steps

Caveats:

- Did not account for clouds/precipitation
- Tracked full resolution water vapor fields
- Used a relatively simple feature tracking algorithm
- Did not apply any image enhancement
- Next steps:
 - Mask clouds and/or precipitation assess yield and uncertainty
 - Smooth fields consistent with IR and MW sounders
 - Employ more sophisticated image tracking techniques (e.g., optical flow)
 - Extend analysis to other regions and times
 - Use state-dependent error characteristics in forecast OSSEs
 - Utilize machine learning to estimate uncertainties from static fields expand utility of error analysis to a much larger suite of nature runs

Sub-Optimal Algorithm

Angle between moisture gradient and wind direction (deg)